Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.345
Filtrar
1.
Curr Drug Metab ; 24(11): 780-785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38141187

RESUMO

BACKGROUND: Enrofloxacin (ENR) is a fluoroquinolone antibiotic approved for use in sheep of all ages. The body composition and metabolic capability change with age. These changes may alter the pharmacokinetics of drugs and thus their effect. Therefore, the pharmacokinetics of drugs need to be established in target- age animals. OBJECTIVE: To determine the pharmacokinetics of ENR and its active metabolite, ciprofloxacin (CIP), following a single intravenous administration of ENR at a dose of 10 mg/kg in different ages of sheep. METHODS: The study was carried out in the one-, six- and twelve-month age period of the sheep. A single dose of 10 mg/kg ENR was administered intravenously through the jugular vein to sheep in all age periods. ENR and CIP plasma concentrations were determined using HPLC-UV and analyzed using a non-compartmental method. RESULTS: ENR was detected in the plasma until 36 h in one-month-old and up to 24 h in other ages. CIP was detected in the plasma up to 24 h in all age groups. The t1/2ʎz and Vdss were significantly higher in one-month-old sheep than in six and twelve-months old sheep. There was no difference in ClT and AUC values in different age groups. AUC0-∞CIP/AUC0-∞ENR ratios were higher in one-month-old than in six- and twelve-months sheep. CONCLUSION: The most important pharmacokinetic changes associated with aging in sheep are decreased Vdss and t1/2ʎz of ENR and the low ratio metabolizing of ENR to CIP. Pharmacokinetic/pharmacodynamic data showed that ENR after IV administration of 10 mg/kg dose provided the optimal AUC0-24/MIC90 ratios for E. coli, P. multocida and Mycoplasma spp. (>125) with MIC of 0.37 µg/mL and for S. aureus (>30) with MIC of 0.5 µg/mL in all ages of sheep.


Assuntos
Escherichia coli , Staphylococcus aureus , Animais , Ovinos , Enrofloxacina/farmacocinética , Staphylococcus aureus/metabolismo , Área Sob a Curva , Ciprofloxacina/farmacocinética , Fluoroquinolonas/farmacocinética , Administração Intravenosa
2.
Antimicrob Agents Chemother ; 67(3): e0149322, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36786609

RESUMO

Transporter-mediated drug-drug interactions (DDIs) are of concern in antimicrobial drug development, as they can have serious safety consequences. We used positron emission tomography (PET) imaging-based pharmacokinetic (PK) analysis to assess the effect of different drugs, which may cause transporter-mediated DDIs, on the tissue distribution and excretion of [18F]ciprofloxacin as a radiolabeled model antimicrobial drug. Mice underwent PET scans after intravenous injection of [18F]ciprofloxacin, without and with pretreatment with either probenecid (150 mg/kg), cimetidine (50 mg/kg), or pyrimethamine (5 mg/kg). A 3-compartment kidney PK model was used to assess the involvement of renal transporters in the examined DDIs. Pretreatment with probenecid and cimetidine significantly decreased the renal clearance (CLrenal) of [18F]ciprofloxacin. The effect of cimetidine (-86%) was greater than that of probenecid (-63%), which contrasted with previously published clinical data. The kidney PK model revealed that the decrease in CLrenal was caused by inhibition of basal uptake transporters and apical efflux transporters in kidney proximal tubule cells. Changes in the urinary excretion of [18F]ciprofloxacin after pretreatment with probenecid and cimetidine resulted in increased blood and organ exposure to [18F]ciprofloxacin. Our results suggest that multiple membrane transporters mediate the tubular secretion of ciprofloxacin, with possible species differences between mice and humans. Concomitant medication inhibiting renal transporters may precipitate DDIs, leading to decreased urinary excretion and increased blood and organ exposure to ciprofloxacin, potentially exacerbating adverse effects. Our study highlights the strength of PET imaging-based PK analysis to assess transporter-mediated DDIs at a whole-body level.


Assuntos
Anti-Infecciosos , Probenecid , Humanos , Camundongos , Animais , Probenecid/farmacologia , Cimetidina/farmacologia , Rim/diagnóstico por imagem , Proteínas de Membrana Transportadoras , Interações Medicamentosas , Tomografia por Emissão de Pósitrons , Ciprofloxacina/farmacocinética
3.
Artigo em Inglês | MEDLINE | ID: mdl-36709862

RESUMO

The objective of this study was to examine the pharmacokinetic (PK) properties of enrofloxacin (EF) and its metabolite, ciprofloxacin (CF), in yellow catfish (Pelteobagrus fulvidraco) after a single oral dose of EF at 20 mg/kg at 20, 25, and 30 °C. Samples were collected at pre-designed time points and determined by high-performance liquid chromatography with a fluorescent detector. Results showed that most concentrations of EF and CF in plasma and tissues at the same time point at different temperatures were statistically significant. With the increase in temperature, the terminal half-life (T1/2λz) of EF and CF was first reduced from 20 to 25 °C but elevated from 25 to 30 °C in plasma, muscle + skin, gill, liver, and kidney, respectively. The area under the plasma concentration-time curves (AUClast) of EF were all decreased in plasma, muscle + skin, and gill except for that of EF in the liver and kidney. However, the AUClast and the apparent metabolic rate of CF were exhibited first elevated and then decreased trend. The apparent volume of distribution (Vz_F) of EF was first reduced from 20 to 25 °C but increased at 30 °C. The apparent total body clearance (CL_F) of EF was increased from 0.15 to 0.32 L/h·kg with the temperature elevation. These indicated that increased temperature markedly affected the PKs of EF and CF in yellow catfish. Through in-depth analysis, the EF dosage of 20 mg/kg is appropriate to use in yellow catfish at 20 and 25 °C but 30 °C.


Assuntos
Peixes-Gato , Ciprofloxacina , Animais , Enrofloxacina , Ciprofloxacina/farmacocinética , Temperatura , Fluoroquinolonas/análise , Fluoroquinolonas/farmacocinética , Cinética , Administração Oral
4.
Biopharm Drug Dispos ; 43(6): 221-232, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265038

RESUMO

Many mothers need to take some medications during breastfeeding, which may carry a risk to breastfed infants. Thus, determining the amount of a drug transferred into breast milk is critical for risk-benefit analysis of breastfeeding. Breast cancer resistance protein (BCRP), an efflux transporter which usually protects the body from environmental and dietary toxins, was reported to be highly expressed in lactating mammary glands. In this study, we developed a mechanistic lactation physiologically based pharmacokinetic (PBPK) modeling approach incorporating BCRP mediated transport kinetics to simulate the concentration-time profiles of five BCRP drug substrates (acyclovir, bupropion, cimetidine, ciprofloxacin, and nitrofurantoin) in nursing women's plasma and milk. Due to the lack of certain physiological parameters and scaling factors in nursing women, we combine the bottom up and top down PBPK modeling approaches together with literature reported data to optimize and determine a set of parameters that are applicable for all five drugs. The predictive performance of the PBPK models was assessed by comparing predicted pharmacokinetic profiles and the milk-to-plasma (M/P) ratio with clinically reported data. The predicted M/P ratios for acyclovir, bupropion, cimetidine, ciprofloxacin, and nitrofurantoin were 2.48, 3.70, 3.55, 1.21, and 5.78, which were all within 1.5-fold of the observed values. These PBPK models are useful to predict the PK profiles of those five drugs in the milk for different dosing regimens. Furthermore, the approach proposed in this study will be applicable to predict pharmacokinetics of other transporter substrates in the milk.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Lactação , Leite Humano , Feminino , Humanos , Lactente , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bupropiona/farmacocinética , Cimetidina/farmacocinética , Ciprofloxacina/farmacocinética , Lactação/metabolismo , Leite Humano/química , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Nitrofurantoína/farmacocinética , Aciclovir/farmacocinética
5.
Clin Pharmacokinet ; 61(8): 1167-1175, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35641862

RESUMO

BACKGROUND AND OBJECTIVE: Ciprofloxacin is a fluoroquinolone used for empirical and targeted therapy of a wide range of infections. Despite the increase in obesity prevalence, only very limited guidance is available on whether the ciprofloxacin dose needs to be adjusted when administered orally or intravenously in (morbidly) obese individuals. Our aim was to evaluate the influence of (morbid) obesity on ciprofloxacin pharmacokinetics after both oral and intravenous administration, to ultimately guide dosing in this population. METHODS: (Morbidly) obese individuals undergoing bariatric surgery received ciprofloxacin either orally (500 mg; n = 10) or intravenously (400 mg; n = 10), while non-obese participants received semi-simultaneous oral dosing of 500 mg followed by intravenous dosing of 400 mg 3 h later (n = 8). All participants underwent rich sampling (11-17 samples) for 12 h after administration. Non-linear mixed-effects modelling and simulations were performed to evaluate ciprofloxacin exposure in plasma. Prior data from the literature were subsequently included in the model to explore exposure in soft tissue in obese and non-obese patients. RESULTS: Overall, 28 participants with body weights ranging from 57 to 212 kg were recruited. No significant influence of body weight on bioavailability, clearance or volume of distribution was identified (all p > 0.01). Soft tissue concentrations were predicted to be lower in obese individuals despite similar plasma concentrations compared with non-obese individuals. CONCLUSION: Based on plasma pharmacokinetics, we found no evidence of the influence of obesity on ciprofloxacin pharmacokinetic parameters; therefore, ciprofloxacin dosages do not need to be increased routinely in obese individuals. In the treatment of infections in tissue where impaired ciprofloxacin penetration is anticipated, higher dosages may be required. TRIAL REGISTRATION: Registered in the Dutch Trial Registry (NTR6058).


Assuntos
Ciprofloxacina , Obesidade Mórbida , Administração Intravenosa , Ciprofloxacina/farmacocinética , Ciprofloxacina/uso terapêutico , Humanos , Infusões Intravenosas , Estudos Prospectivos
6.
Anaesth Crit Care Pain Med ; 41(3): 101080, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35472580

RESUMO

INTRODUCTION: This study aimed to describe the pharmacokinetics (PK) of ciprofloxacin in critically ill patients receiving ECMO and recommend a dosing regimen that provides adequate drug exposure. METHODS: Serial blood samples were taken from ECMO patients receiving ciprofloxacin. Total ciprofloxacin concentrations were measured by chromatographic assay and analysed using a population PK approach with Pmetrics®. Dosing simulations were performed to ascertain the probability of target attainment (PTA) represented by the area under the curve to minimum inhibitory concentration ratio (AUC0-24/MIC) ≥ 125. RESULTS: Eight patients were enrolled, of which three received concurrent continuous venovenous haemodiafiltration (CVVHDF). Ciprofloxacin was best described in a two-compartment model with total body weight and creatinine clearance (CrCL) included as significant predictors of PK. Patients not requiring renal replacement therapy generated a mean clearance of 11.08 L/h while patients receiving CVVHDF had a mean clearance of 1.51 L/h. Central and peripheral volume of distribution was 77.31 L and 90.71 L, respectively. ECMO variables were not found to be significant predictors of ciprofloxacin PK. Dosing simulations reported that a 400 mg 8 -hly regimen achieved > 72% PTA in all simulated patients with CrCL of 30 mL/min, 50 mL/min and 100 mL/min and total body weights of 60 kg and 100 kg at a MIC of 0.5 mg/L. CONCLUSION: Our study reports that established dosing recommendations for critically ill patients not on ECMO provides sufficient drug exposure for maximal ciprofloxacin activity for ECMO patients. In line with non-ECMO critically ill adult PK studies, higher doses and therapeutic drug monitoring may be required for critically ill adult patients on ECMO.


Assuntos
Ciprofloxacina , Oxigenação por Membrana Extracorpórea , Adulto , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacocinética , Ciprofloxacina/uso terapêutico , Estado Terminal/terapia , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Terapia de Substituição Renal/métodos
7.
PLoS One ; 16(12): e0261720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941946

RESUMO

Lower respiratory tract infections (LRTIs) are one of the fatal diseases of the lungs that have severe impacts on public health and the global economy. The currently available antibiotics administered orally for the treatment of LRTIs need high doses with frequent administration and cause dose-related adverse effects. To overcome this problem, we investigated the development of ciprofloxacin (CIP) loaded poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) for potential pulmonary delivery from dry powder inhaler (DPI) formulations against LRTIs. NPs were prepared using a straightforward co-assembly reaction carried out by the intermolecular hydrogen bonding among PEtOx, tannic acid (TA), and CIP. The prepared NPs were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction analysis (PXRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The CIP was determined by validated HPLC and UV spectrophotometry methods. The CIP loading into the PEtOx was between 21-67% and increased loading was observed with the increasing concentration of CIP. The NP sizes of PEtOx with or without drug loading were between 196-350 nm and increased with increasing drug loading. The in vitro CIP release showed the maximum cumulative release of about 78% in 168 h with a burst release of 50% in the first 12 h. The kinetics of CIP release from NPs followed non-Fickian or anomalous transport thus suggesting the drug release was regulated by both diffusion and polymer degradation. The in vitro aerosolization study carried out using a Twin Stage Impinger (TSI) at 60 L/min air flow showed the fine particle fraction (FPF) between 34.4% and 40.8%. The FPF was increased with increased drug loading. The outcome of this study revealed the potential of the polymer PEtOx as a carrier for developing CIP-loaded PEtOx NPs as DPI formulation for pulmonary delivery against LRTIs.


Assuntos
Ciprofloxacina , Portadores de Fármacos , Nanopartículas/química , Poliaminas , Administração por Inalação , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Inaladores de Pó Seco , Humanos , Poliaminas/química , Poliaminas/farmacocinética
8.
Pak J Pharm Sci ; 34(2(Supplementary)): 767-772, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34275813

RESUMO

A new simple, accurate, precise and sensitive liquid chromatographic method for the analysis of Ciprofloxacin in human plasma, suitable for quantification of drug was developed and validated using HPLC-UV method. The analyte was chromatographically separated from endogenous plasma components on a C-18 reversed phase column (5µm, 25cm × 0.46cm) and detected at 278nm. The sample pretreatment was carried out with acetonitrile on 200µl of plasma. The Lower limit of quantification (LLOQ) was 0.04 µg/ml with linearity in the range 0.04-4 µg/ml and coefficient of correlation value (R2)>0.995. The method was successfully validated as per current FDA guidance for necessary parameters and applied to a pilot bioavailability study conducted on six healthy volunteers with marketed Ciprofloxacin 250mg immediate release tablets. The plasma concentrations were subjected to non-compartmental analysis for calculation of pharmacokinetic parameters like Cmax, Tmax, AUCo-t, AUC 0-∞ and t½ etc. The mean values of Cmax and Tmax were found to be 1.35±0.09µg/ml and 1.25±0.27h respectively while for other pharmacokinetic parameters including AUCo-t, AUC0-∞ were found to be 5.98±0.96 µg/ml×h and 6.34±1.07µg/ml×h. The drug exhibited half-life (t½) of 3.94±0.33h. The obtained results proved the suitability of the method for routine pharmacokinetic studies of Ciprofloxacin.


Assuntos
Antibacterianos/sangue , Cromatografia Líquida/métodos , Ciprofloxacina/sangue , Adulto , Antibacterianos/farmacocinética , Disponibilidade Biológica , Ciprofloxacina/farmacocinética , Humanos , Limite de Detecção , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Eur J Clin Pharmacol ; 77(11): 1687-1695, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34160669

RESUMO

PURPOSE: This study aimed to characterize pharmacokinetics of intravenous and oral ciprofloxacin in children to optimize dosing scheme. METHODS: Children treated with ciprofloxacin were included. Pharmacokinetics were described using non-linear mixed-effect modelling and validated with an external dataset. Monte Carlo simulations investigated dosing regimens to achieve a target AUC0-24 h/MIC ratio ≥ 125. RESULTS: A total of 189 children (492 concentrations) were included. A two-compartment model with first-order absorption and elimination best described the data. An allometric model was used to describe bodyweight (BW) influence, and effects of estimated glomerular filtration rate (eGFR) and age were significant on ciprofloxacin clearance. CONCLUSION: The recommended IV dose of 10 mg/kg q8h, not exceeding 400 mg q8h, would achieve AUC0-24 h to successfully treat bacteria with MICs ≤ 0.25 (e.g. Salmonella, Escherichia coli, Proteus, Haemophilus, Enterobacter, and Klebsiella). A dose increase to 600 mg q8h in children > 40 kg and to 15 mg/kg q8h (max 400 mg q8h, max 600 mg q8h if augmented renal clearance, i.e., eGFR > 200 mL/min/1.73 m2) in children < 40 kg would be needed for the strains with highest MIC (16% of Pseudomonas aeruginosa and 47% of Staphylococcus aureus). The oral recommended dose of 20 mg/kg q12h (not exceeding 750 mg) would cover bacteria with MICs ≤ 0.125 but may be insufficient for bacteria with higher MIC and a dose increase according bodyweight and eGFR would be needed. These doses should be prospectively confirmed, and a therapeutic drug monitoring could be used to refine them individually.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Bacteriemia/tratamento farmacológico , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacocinética , Administração Intravenosa , Adolescente , Fatores Etários , Área Sob a Curva , Estatura , Peso Corporal , Criança , Pré-Escolar , Creatinina/sangue , Relação Dose-Resposta a Droga , Feminino , Taxa de Filtração Glomerular , Humanos , Lactente , Recém-Nascido , Masculino , Testes de Sensibilidade Microbiana , Modelos Biológicos , Método de Monte Carlo , Estudos Prospectivos , Fatores Sexuais
10.
Am J Obstet Gynecol ; 225(6): 670.e1-670.e9, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34058171

RESUMO

BACKGROUND: Pregnant women have an increased risk of infections, and early and decisive treatment is preferred to prevent complications. Although ciprofloxacin is very commonly used, safety aspects of maternal treatment during pregnancy are limited, and avoidance of its use during late pregnancy is recommended. OBJECTIVE: The aim is to estimate maternal-to-fetal transfer clearance of ciprofloxacin at a therapeutic concentration and to determine fetal exposure to maternally administered ciprofloxacin. STUDY DESIGN: Transplacental pharmacokinetics were determined with an ex vivo placental model, which is a reliable experimental model for estimating fetal drug exposure. Human placentas from uncomplicated term pregnancies were collected after delivery and a suitable cotyledon was cannulated. Ciprofloxacin was added at a therapeutic concentration (1.6 µg/mL) to the maternal compartment, and antipyrine was included as a reference drug (10.0 µg/mL). Samples were collected from the maternal and fetal compartment at 12 time points (-2 to 180 minutes), and the integrity and metabolic parameters were measured consecutively. Drug concentrations were determined using ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS: A total of 5 human placentas from healthy term pregnancies were collected after delivery and cannulated with success. Ciprofloxacin crossed the placenta; its mean concentration in the fetal compartment was 0.3 µg/mL, accounting for 22% (0.29/1.30; range, 15%-31%) of the maternal concentration after 3 hours. The fetal/maternal ciprofloxacin concentration ratio increased gradually over time and reached 0.53. The transfer clearance for ciprofloxacin was 0.28 mL/min (range, 0.21-0.41 mL/min) during the first hour and 0.21 mL/min (range, 0.14-0.26 mL/min) during the following 2 hours. After end perfusion, the mean tissue concentration and proportion of ciprofloxacin were 0.7 µg/g and 11% (14/130; range, 7%-14%), respectively. CONCLUSION: Ciprofloxacin crossed the placenta at a slow, constant rate, indicating moderate fetal exposure. This study verifies an accumulation of ciprofloxacin in the placenta that may lengthen the duration of fetal exposure. These results are an essential element of fetal risk assessment, but further studies are needed to estimate fetal safety.


Assuntos
Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Placenta/metabolismo , Adulto , Antibacterianos/administração & dosagem , Ciprofloxacina/administração & dosagem , Feminino , Humanos , Modelos Biológicos , Gravidez
11.
Biomed Mater ; 16(4)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34038876

RESUMO

In the present study, ß-tricalcium phosphate (ß-TCP) scaffolds with various amounts of bredigite (Bre) were fabricated by the space holder method. The effect of bredigite content on the structure, mechanical properties,in vitrobioactivity, and cell viability was investigated. The structural assessment of the composite scaffolds presented interconnected pores with diameter of 300-500 µm with around 78%-82% porosity. The results indicated that the compressive strength of the scaffolds with 20% bredigite (1.91 MPa) was improved in comparison with scaffolds with 10% bredigite (0.52 MPa), due to the reduction of the average pore and grain sizes. Also, the results showed that the bioactivity and biodegradability of ß-TCP/20Bre were better than that of ß-TCP/10Bre. Besides, in this study, the release kinetics of ciprofloxacin (CPFX) loaded ß-TCP/Bre composites as well as the ability of scaffolds to function as a sustained release drug carrier was investigated. Drug release pattern of ß-TCP/bredigite-5CPFX scaffolds exhibited the rapid burst release of 43% for 3 h along with sustained release (82%) for 32 h which is favorable for bone infection treatment. Antibacterial tests revealed that the antibacterial properties of ß-TCP/bredigite scaffolds are strongly related to the CPFX concentration, wherein the scaffold containing 5% CPFX showed the most significant zone of inhibition (33 ± 0.5 mm) againstStaphylococcus aureus. The higher specific surface areas of nanostructure ß-TCP/bredigite scaffolds containing CPFX lead to an initial rapid release followed by constant drug delivery. MTT assay showed that the cell viability of ß-TCP/bredigite scaffold loading with up to 1%-3% CPFX (95 ± 2%), is greater than for scaffolds containing 5% CPFX (84 ± 2%). In Overall, it may suggested that ß-TCP/bredigite containing 1%-3% CPFX possesses great cell viability and antibacterial activity and be employed as bactericidal biomaterials and bone infection treatment.


Assuntos
Amiantos Anfibólicos , Substitutos Ósseos , Fosfatos de Cálcio , Ciprofloxacina , Tecidos Suporte/química , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Amiantos Anfibólicos/química , Amiantos Anfibólicos/farmacocinética , Amiantos Anfibólicos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Substitutos Ósseos/farmacocinética , Substitutos Ósseos/farmacologia , Substitutos Ósseos/toxicidade , Osso e Ossos/citologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacocinética , Fosfatos de Cálcio/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Ciprofloxacina/farmacologia , Humanos , Porosidade , Engenharia Tecidual
12.
Clin Transl Sci ; 14(4): 1543-1553, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33742784

RESUMO

Clinical trials for pediatric indications and new pediatric drugs face challenges, including the limited blood volume due to the patients' small bodies. In Japan, the Evaluation Committee on Unapproved or Off-labeled Drugs with High Medical Needs has discussed the necessity of pediatric indications against the background of a lack of Japanese pediatric data. The limited treatment options regarding antibiotics for pediatric patients are associated with the emergence of antibiotic-resistant bacteria. Regulatory guidelines promote the use of model-based drug development to reduce practical and ethical constraints for pediatric patients. Sampling optimization is one of the key study designs for pediatric drug development. In this simulation study, we evaluated the precision of the empirical Bayes estimates of pharmacokinetic (PK) parameters based on the sampling times optimized by published pediatric population PK models. We selected three previous PK studies of cefepime and ciprofloxacin in infants and young children as paradigms. The number of sampling times was reduced from original full sampling times to two to four sampling times based on the Fisher information matrix. We observed that the precision of empirical Bayes estimates of the key PK parameters and the predicted efficacy based on the reduced sampling times were generally comparable to those based on the original full sampling times. The model-based approach to sampling optimization provided a maximization of PK information with a minimum burden on infants and young children for the future development of pediatric drugs.


Assuntos
Antibacterianos/farmacocinética , Coleta de Amostras Sanguíneas/métodos , Desenvolvimento de Medicamentos , Modelos Biológicos , Antibacterianos/administração & dosagem , Teorema de Bayes , Cefepima/administração & dosagem , Cefepima/farmacocinética , Pré-Escolar , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacocinética , Simulação por Computador , Humanos , Lactente , Japão
13.
Mol Pharm ; 18(4): 1530-1543, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33656882

RESUMO

The aim of the study was to investigate the impact of Crohn's disease (CD) on the performance of a lipid-based formulation of ciprofloxacin in a complex gastrointestinal simulator (TIM-1, TNO) and to compare the luminal environment in terms of bile salt and lipid composition in CD and healthy conditions. CD conditions were simulated in the TIM-1 system with a reduced concentration of porcine pancreatin and porcine bile. The bioaccessibility of ciprofloxacin was similar in simulated CD and healthy conditions considering its extent as well as its time course in the jejunum and ileum filtrate. Differences were observed in terms of the luminal concentration of triglycerides, monoglycerides, and fatty acids in the different TIM-1 compartments, indicating a reduction and delay in the lipolysis of formulation excipients in CD. The quantitative analysis of bile salts revealed higher concentrations for healthy conditions (standard TIM-1 fasted-state protocol) in the duodenum and jejunum TIM-1 compartments compared to published data in human intestinal fluids of healthy subjects. The reduced concentrations of bile salts in simulated CD conditions correspond to the levels observed in human intestinal fluids of healthy subjects in the fasted state.A lipidomics approach with ultra performance liquid chromatography (UPLC)/mass spectrometry (MS) has proven to be a time-efficient method to semiquantitatively analyze differences in fatty acid and bile salt levels between healthy and CD conditions. The dynamic luminal environment in CD and healthy conditions after administration of a lipid-based formulation can be simulated using the TIM-1 system. For ciprofloxacin, an altered luminal lipid composition had no impact on its performance indicating a low risk of altered performance in CD patients.


Assuntos
Ciprofloxacina/farmacocinética , Doença de Crohn/tratamento farmacológico , Excipientes/química , Mucosa Intestinal/metabolismo , Lipídeos/química , Administração Oral , Animais , Ácidos e Sais Biliares/metabolismo , Ciprofloxacina/administração & dosagem , Doença de Crohn/patologia , Jejum , Voluntários Saudáveis , Humanos , Íleo/metabolismo , Íleo/patologia , Mucosa Intestinal/patologia , Jejuno/metabolismo , Jejuno/patologia , Lipidômica , Pancreatina/metabolismo , Suspensões , Suínos , Distribuição Tecidual
14.
Int J Biol Macromol ; 176: 459-467, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607143

RESUMO

This study was carried out to project a safe nano-drug carrier composed of chitosan and cyanocobalamin (CNCbl) to improve oral delivery of ciprofloxacin hydrochloride (CIP). CIP is classified in class IV of the biopharmaceutical classification system with low solubility and permeabilityA, so it has some problems if given orally. Novel conjugate of low molecular weight chitosan, as a natural biopolymer, and CNCbl was synthesized, and then drug loading and in-vitro drug release were assessed. The loading of CIP was optimized by the Design-Expert software and the central composite design method, and that the optimal drug loading efficiency (57%) was obtained via analysis of variance (ANOVA). In-vitro drug release studies showed controlled release patterns in two various conditions, namely phosphate buffer saline (pH = 7.4) and 0.1 N HCl. Functionalized nano-drug-loaded carrier showed cytotoxicity as much as that of free drug, particle size less than 100 nm as well as positive zeta potential. Due to the beneficial properties of the chitosan-based drug carrier and the suitable features of the CIP-loaded carrier, this chitosan-based nano-drug delivery system can be regarded as an ideal candidate for oral delivery of the CIP as a drug model.


Assuntos
Quitosana , Ciprofloxacina , Nanopartículas/química , Vitamina B 12 , Quitosana/química , Quitosana/farmacologia , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Ciprofloxacina/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Vitamina B 12/química , Vitamina B 12/farmacologia
15.
Clin Pharmacol Ther ; 109(4): 1104-1115, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550617

RESUMO

Augmented renal clearance (ARC, creatinine clearance > 130 mL/minute) makes difficult achievement of effective concentrations of renally cleared antibiotics in critically ill patients. This study examined the synergistic killing and resistance suppression for meropenem-ciprofloxacin combination dosage regimens against Pseudomonas aeruginosa isolates within the context of ARC. Clinically relevant meropenem and ciprofloxacin concentrations, alone and in combinations, were studied against three clinical isolates with a range of susceptibilities to each of the antibiotics. Isolate Pa1280 was susceptible to both meropenem and ciprofloxacin, Pa1284 had intermediate susceptibility to meropenem and was susceptible to ciprofloxacin, and CR380 was resistant to meropenem and had intermediate susceptibility to ciprofloxacin. Initially, isolates were studied in 72-hour static-concentration time-kill (SCTK) studies. Subsequently, the pharmacokinetic profiles expected in patients with ARC receiving dosage regimens, including at the highest approved daily doses (meropenem 6 g daily divided and administered as 0.5-hour infusions every 8 hours, or as a continuous infusion; ciprofloxacin 0.4 g as 1-hour infusions every 8 hours), were examined in a dynamic hollow-fiber infection model (HFIM) over 7-10 days. In both SCTK and HFIM, combination regimens were generally synergistic and suppressed growth of less-susceptible subpopulations, these effects being smaller for isolate CR380. The time-courses of total and less-susceptible bacterial populations in the HFIM were well-described by mechanism-based models, which enabled conduct of Monte Carlo simulations to predict likely effectiveness of approved dosage regimens at different creatinine clearances. Optimized meropenem-ciprofloxacin combination dosage regimens may be a viable consideration for P. aeruginosa infections in critically ill patients with ARC.


Assuntos
Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Estado Terminal , Meropeném/farmacocinética , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/administração & dosagem , Técnicas Bacteriológicas , Ciprofloxacina/administração & dosagem , Creatinina/sangue , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Função Renal , Meropeném/administração & dosagem , Método de Monte Carlo , Pseudomonas aeruginosa/isolamento & purificação
16.
Eur J Clin Pharmacol ; 77(6): 895-902, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33404754

RESUMO

PURPOSE: Tizanidine, an alpha-adrenergic substance with antinociceptive and antihypertensive effects, is extensively metabolized via cytochrome P450 (CYP) 1A2. Therefore, coadministration with potent CYP1A2 inhibitors, such as ciprofloxacin, is contraindicated. However, both drugs are broadly utilized in various countries. Their concomitant use bears an inherent high risk for clinically significant symptoms, especially in multimorbid patients experiencing polypharmacy. This study aims to investigate the impact of coadministration of tizanidine and ciprofloxacin using real-world pharmacovigilance data and to raise awareness of this potentially underestimated safety issue. METHODS: We conducted a retrospective study including Individual Case Safety Reports (ICSR) registered until March 1, 2017, in the World Health Organization (WHO) global database. Demographic data, drug administration information, the course of the adverse drug reaction (ADR), its severity, and outcomes were analyzed for cases reporting ciprofloxacin comedication. RESULTS: In 91 (2.0%) of the identified 4192 worldwide ICSR on tizanidine, coadministration of ciprofloxacin was reported. Most of the patients were female (n = 59, 64.8%) with a median age of 54 years (range 13-85 years). The countries contributing most reports were the USA (n = 54, 59.3%) and Switzerland (n = 16, 17.6%). ADRs reported most often affected the nervous system and the cardiac function, especially with large tizanidine doses or drugs with CNS and cardiovascular depressant effects. In two cases, a fatal outcome was reported. CONCLUSION: Despite the existing formal contraindication, the concomitant use of tizanidine and ciprofloxacin can be observed in real-world clinical practice. Reactions mainly affected the central nervous and the cardiovascular system resulting in potentially severe adverse effects. The concomitant use of tizanidine and ciprofloxacin should absolutely be avoided.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacocinética , Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Clonidina/análogos & derivados , Adolescente , Agonistas de Receptores Adrenérgicos alfa 2/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/efeitos adversos , Área Sob a Curva , Ciprofloxacina/efeitos adversos , Clonidina/efeitos adversos , Clonidina/farmacocinética , Bases de Dados Factuais , Interações Medicamentosas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Farmacovigilância , Estudos Retrospectivos , Organização Mundial da Saúde , Adulto Jovem
17.
J Chromatogr Sci ; 59(4): 338-346, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33401303

RESUMO

A simple and reliable high-performance liquid chromatography method for simultaneous quantitation of gliclazide and ciprofloxacin in plasma sample has been developed and validated. This method implements protein precipitation, a simple and practical pretreatment method by the addition of acetonitrile that gives a clean supernatant. The separation was carried out in a system consisted of a C18 column with acetonitrile and KH2PO4 (0.01 M, 0.1% v/v of triethylamine, pH 2.7) as the mobile phase in a gradient elution at a total flow-rate of 1 mL/min. Gliclazide and ciprofloxacin were quantitated using an ultraviolet detector set at wavelengths of 229 and 277 nm, respectively, which ensures optimal sensitivity for both compounds. This method possesses an excellent linearity at concentration ranges of 0.5-50 mg/L for gliclazide and 0.1-10 mg/L for ciprofloxacin. High within- and between-run accuracy for both gliclazide (% error of -8.00 to 0.45%) and ciprofloxacin (% error of -10.00 to 7.63%) were demonstrated. The intra- and inter-day precision (expressed as %CV) was <8 and 12% for gliclazide and ciprofloxacin, respectively. Both analytes were stable during storage and sample processing. The method reported in this study can be implemented for pharmacokinetic interaction study in rats.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ciprofloxacina/sangue , Ciprofloxacina/farmacocinética , Gliclazida/sangue , Gliclazida/farmacocinética , Animais , Ciprofloxacina/química , Estabilidade de Medicamentos , Gliclazida/química , Modelos Lineares , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Klin Mikrobiol Infekc Lek ; 27(4): 142-147, 2021 Dec.
Artigo em Tcheco | MEDLINE | ID: mdl-35220574

RESUMO

Ciprofloxacin is a broad-spectrum bactericidal antibiotic with a concentration-dependent antimicrobial effect. Ciprofloxacin penetrates well into tissues, providing good efficacy against many Gram-negative microorganisms. Due to its good antibacterial efficacy and tolerability, it is often used in the treatment of critically ill. However, high interindividual variability in pharmacokinetics is reported in this population, especially in volume of distribution, clearance, and elimination half-life. Interindividual variability across patient groups results in difficult achievement of the therapeutic goal, mostly described as AUC/MIC ≥ 125. The usual dosing is 400 mg after 8-12 hours intravenously for one hour. In critically ill patients, the lower dose proved to be insufficient. In these patients, doses of at least 1 200 mg/day are required. An initial dose of 800 mg increases the probability of achieving the therapeutic goal by 35-45 %. Although many authors mention the possibility of using therapeutic drug monitoring to achieve the therapeutic goal, there are only few trials describing its benefits.


Assuntos
Antibacterianos , Ciprofloxacina , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacocinética , Ciprofloxacina/uso terapêutico , Estado Terminal/terapia , Monitoramento de Medicamentos , Humanos
19.
J Artif Organs ; 24(1): 65-73, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33033945

RESUMO

The aim of this study was to assess the in vitro adsorption of antibiotics: vancomycin, gentamicin, ciprofloxacin and tigecycline on both polyethyleneimine-treated polyacrylonitrile membrane of AN69ST filter and polysulfone membrane of AV1000 filter using porcine blood as a model close to in vivo conditions. The porcine blood with antibiotic dissolved in it was pumped into hemofiltration circuit (with AN69ST or AV1000 filter), ultrafiltration fluid was continuously returned to the reservoir containing blood with antibiotic. Blood samples to determine antibiotic concentrations were taken at minutes 0, 5, 15, 30, 45, 60, 90 and 120 from the pre- blood pump of the hemofiltration circuit. To assess possible spontaneous degradation of the drug in the solution there was an additional reservoir prepared for each antibiotic, containing blood with the drug, which was not connected to the circuit. In the case of vancomycin, ciprofloxacine and tigecycline, a statistically significant decrease in the drug concentration in the hemofiltration circuit in comparison to initial value as well as to the concentrations in the control blood was observed, both for polyacrylonitrile and plolysulfone membrane. In the case of gentamicin, significant adsorption was noted only on polyacrylonitrile membrane. Our studies demonstrated that in full blood adsorption of antibiotics may be big enough to be of clinical significance. In particular in the case of polyacrylonitrile membrane.


Assuntos
Antibacterianos/farmacocinética , Terapia de Substituição Renal Contínua , Membranas Artificiais , Resinas Acrílicas , Adsorção , Animais , Ciprofloxacina/farmacocinética , Gentamicinas/farmacocinética , Hemofiltração , Polímeros , Sulfonas , Tigeciclina/farmacocinética , Vancomicina/farmacocinética
20.
PLoS One ; 15(12): e0243003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270697

RESUMO

We study the experimentally measured ciprofloxacin antibiotic diffusion through a gel-like artificial sputum medium (ASM) mimicking physiological conditions typical for a cystic fibrosis layer, in which regions occupied by Pseudomonas aeruginosa bacteria are present. To quantify the antibiotic diffusion dynamics we employ a phenomenological model using a subdiffusion-absorption equation with a fractional time derivative. This effective equation describes molecular diffusion in a medium structured akin Thompson's plumpudding model; here the 'pudding' background represents the ASM and the 'plums' represent the bacterial biofilm. The pudding is a subdiffusion barrier for antibiotic molecules that can affect bacteria found in plums. For the experimental study we use an interferometric method to determine the time evolution of the amount of antibiotic that has diffused through the biofilm. The theoretical model shows that this function is qualitatively different depending on whether or not absorption of the antibiotic in the biofilm occurs. We show that the process can be divided into three successive stages: (1) only antibiotic subdiffusion with constant biofilm parameters, (2) subdiffusion and absorption of antibiotic molecules with variable biofilm transport parameters, (3) subdiffusion and absorption in the medium but the biofilm parameters are constant again. Stage 2 is interpreted as the appearance of an intensive defence build-up of bacteria against the action of the antibiotic, and in the stage 3 it is likely that the bacteria have been inactivated. Times at which stages change are determined from the experimentally obtained temporal evolution of the amount of antibiotic that has diffused through the ASM with bacteria. Our analysis shows good agreement between experimental and theoretical results and is consistent with the biologically expected biofilm response. We show that an experimental method to study the temporal evolution of the amount of a substance that has diffused through a biofilm is useful in studying the processes occurring in a biofilm. We also show that the complicated biological process of antibiotic diffusion in a biofilm can be described by a fractional subdiffusion-absorption equation with subdiffusion and absorption parameters that change over time.


Assuntos
Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Pseudomonas aeruginosa/efeitos dos fármacos , Escarro/microbiologia , Biofilmes/efeitos dos fármacos , Difusão , Modelos Biológicos , Escarro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...